Static and Dynamic Structures of $InBr_x$ (x = 1.4, 1.5, 1.75, and 2) Studied by ^{81}Br NQR and ^{115}In NMR

Koji Yamada, Hiroshi Mohara, Tomotaka Kubo, Takashi Imanaka, Kazue Iwaki, Hiroshi Ohki, and Tsutomu Okuda

Graduate School of Science, Hiroshima University, Kagamiyama 1-3, 739-8526 Higashi-Hiroshima, Japan

Reprint requests to Dr. K. Y.; E-mail: kyamada@sci.hiroshima-u.ac.jp

Z. Naturforsch. **57 a,** 375–380 (2002); received April 2, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Structure and bonding properties of InB_{Ix} (In_5Br_7 , In_2Br_3 , In_4Br_7 and $InBr_2$) were studied by ^{81}Br and ^{115}In NQR, and ^{115}In NMR. The ethane-like $[Br_3In^{II}-In^{II}Br_3]^{2^-}$ anion was confirmed in In_5Br_7 or In_2Br_3 by ^{81}Br NQR and the anion was characterized by the high quadrupole coupling constant at the ^{115}In site ($e^2Qq/h\approx 350$ MHz). On the other hand, In_4Br_7 showed successive phase transitions and was characterized as $[In^{II}]_5[In^{III}Br_4]_2[In^{III}Br_6]$ by means of ^{81}Br NQR and ^{115}In NMR below 370 K. A disordered structure at the cationic sublattice was supposed at Phase I above 370 K. NMR signals assigned to the In^I could not be detected for the powdered sample, however, all quadrupole coupling constants (e^2Qq/h) and chemical shifts (σ_{iso}) could be determined using a single crystal. The In^I sites show relatively large e^2Qq/h and also show larger distribution of the chemical shift suggesting a diversity of the In^I coordination similar to the isoelectronic main group elements such as Sn^{II} or Sb^{III} .

Key words: 115 In NMR; Single Crystal; Quadrupole Coupling Constant; Phase Transition.